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To conclude (...) heating to thermonuclear temperatures should be possible (...),
provided that the plasma is sufficiently quiescent.

Lyman Spitzer, The Stellarator Concept, 1958
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However, the gas is definitely not quiescent.

Lyman Spitzer, The Stellarator Concept, 1958



Abstract

Nuclear fusion is a promising alternative for primary energy production. One ap-
proach to achieve fusion relevant conditions on earth is the magnetic confinement
of high-temperature plasmas. Magnetic confinement fusion experiments suffer from
losses through plasma turbulence. Filaments or blobs are a form of turbulent trans-
port in the scrape-off layer (SOL) of toroidal fusion experiments.
This thesis investigates the parallel coherence of filaments by means of numerical
simulations using the hermes-2 model within the BOUT++ framework. Under varying
conditions a filament either stays a homogeneous structure parallel to the magnetic
field or is ripped apart. Realistic field lines in the SOL of magnetic fusion devices,
especially in stellarator configurations possess a highly varying curvature along the
magnetic field line. A varying curvature drives inhomogeneous polarization along the
field line. Hence, a parallel E×B velocity gradient arises which can tear the filament
apart. The parallel potential gradient resulting from varying polarization drives the
parallel current. If the latter flattens the parallel potential gradient fast enough the
blob stays coherent. The main parameters controlling the propagation time of the
parallel current are the collisionality and the electron plasma beta. These govern
Ohmic and inductive resistance parallel to the magnetic field. A varying curvature
reduces the propagation of a filament compared to a case with constant curvature.
Simulations of realistic curvature variations along field lines in a circular ASDEX
Upgrade-like tokamak (AUG) and Wendelstein 7-X stellarator (W7-X) show the
parallel displacement to correlate with the curvature. The varying W7-X curvature
reduces the propagation of the filament to almost zero. The results are consis-
tent with the previously found parametric dependencies for a sinusoidal curvature
variation. This work supports experimental findings that filaments in W7-X are
comparably slow due to the large major radius of the device. They do not perform
ballistic motion and hence do not drive significant turbulence spreading in the SOL.
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Zusammenfassung

Kernfusion ist eine vielversprechende Alternative als primäre Energiequelle. Ein
Ansatz um fusionsrelevante Bedingungen auf der Erde zu erzeugen ist der mag-
netische Einschluss von Hochtemperaturplasmen. Magnetische Fusionsexperimente
verlieren Teilchen und Wärme durch Plasmaturbulenz. Filamente oder Blobs sind
eine Form des turbulenten Transports in der Abschälschicht von toroidalen mag-
netischen Einschlussexperimenten.
Diese Arbeit untersucht die parallele Kohärenz von Filamenten mit Hilfe numerischer
Simulation des hermes-2 Modells, welches Teil des BOUT++ Frameworks ist. Unter
verschiedenen Bedingungen bleib ein Filament entweder eine zusammenhängende
Struktur parallel zum Magnetfeld oder wird auseinander gerissen. Realistische
Feldlinien in der Abschälschicht von Fusionsexperimenten - insbesondere von Stel-
laratoren - zeigen eine stark entlang der Magnetfeldlinie variierende Krümmung.
Eine variierende Krümmung treibt eine inhomogene Polarisation entlang der Feldlinie
an. Dies führt zu einem parallelen Gradienten der E × B Drift, welcher das Fila-
ment auseinander reißen kann. Der parallele Potentialgradient, der aus der vari-
ierenden Polarisation entsteht, treibt einen parallelen Strom an. Wenn der parallele
Strom den Potentialgradienten rechtzeitig auflöst, bleibt das Filament kohärent.
Andernfalls wird es auseinander gerissen. Die wesentlichen Kontrollparameter für
die Propagationszeit des parallelen Stroms sind die Kollisionalität und das Plas-
mabeta der Elektronen. Diese beiden Größen kontrollieren den Ohmschen und in-
duktiven Widerstand parallel zur Feldlinie. Eine variable Krümmung reduziert die
Geschwindigkeit eines Filaments verglichen mit einem Fall mit konstanter Krümmung.
Simulationen mit realistischer Krümmungsvariation entlang von Feldlinien in einem
kreisförmigen Tokamak mit ASDEX-Upgrade Parametern und im Wendelstein 7-X
stellarator (W7-X) zeigen, dass die parallele Verschiebung mit der Krümmung korre-
liert. Die variable Krümmung der W7-X Feldlinie reduziert die Geschwindigkeit des
Filaments auf quasi null. Diese Ergebnisse sind konsistent mit den zuvor entwick-
elten Parameterstudien mit sinusförmiger Krümmung. Diese Arbeit unterstützt ex-
perimentelle Erkenntnisse wonach Filamente in W-7X aufgrund des großen Radius
der Machine langsam propagieren. Filamente zeigen keine ballistische Bewegung
und treiben keine signifikante Ausbreitung der Turbulenz in die Abschälschicht an.
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Chapter 1

Introduction

1.1 Nuclear Fusion

Energy is a foundation for human civilization and prosperity. The increase of energy
available to humanity enables technological progress and a higher standard of living.
Currently, energy is mostly provided by burning hydrocarbons into CO2 [1].
Nuclear fusion presents a promising alternative as a primary energy source. It is
anticipated to provide baseload energy from the fusion of deuterium 2D and tritium
3T nuclei into helium 4He. For this fusion reaction to occur the positively charged
nuclei must be fast enough to overcome the repulsive coulomb force. Once achieved,
the strong nuclear force acts on a small length scale (∼ 10−15m) and fuses the two
isotopes, releasing a 4He nucleus and a neutron. The difference in binding energy
between products and reactants is distributed between the kinetic energies of the
helium nucleus and the neutron according to momentum conservation

3T + 2D → 4He (3.52MeV) + 1n (14.06MeV). (1.1)

In a nuclear fusion power plant the kinetic energy from the neutrons can be converted
into heat which is used to drive steam turbines and create electricity. The energy of
the α particle can be utilized to heat the remaining 2D and 3T fuel. Other reactions
(e.g. 3He + 2D, 1H+ 11B) are also possible but have much smaller cross sections with
maxima at much higher temperatures and are therefore more difficult to achieve [2].
Deuterium is a stable isotope and can be drawn in abundance from seawater. Tritium
decays with a halflife of 12.32 years [3]. It can be produced from lithium 6Li or 7Li
in a blanket that will be part of commercial fusion power plants using the neutrons
from the fusion reaction via

6Li + 1n → 4He + 3T + 4.784MeV or (1.2)
7Li + 1n → 4He + 3T + 1n− 2.467MeV.

Not all neutrons from the fusion reaction engage in tritium breeding. A self sufficient
power plant demands the use of a neutron multiplier such as beryllium

9Be + 1n → 2 4He + 2 1n− 3.238MeV [2]. (1.3)

All isotopes needed for a fusion reaction (2D and 6/7Li) are available copiously on
earth to provide fusion energy for a practically infinite amount of time.
As a figure of merit, powering all of Germany’s annual 559TWh electricity demand
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9 1.2. PLASMA CONFINEMENT

[4] exclusively by fusion would require about 10 tons of 2D and 15 tons of 3T,
assuming a 30% conversion rate from neutron kinetic energy to electricity. The
total energy demand is divided by the efficiency and the energy per reaction to
get the number of fusion reactions necessary. Multiplying with the deuterium and
tritium mass mD and mT gives the required amount of fuel

559 · 1012Wh

0.3 · 14.06 · 106 eV
·
(
mD

mT

)
≈ 3 · 1030

(
mD

mT

)
≈
(
10
15

)
· 103 kg. (1.4)

Fuel in a fusion reactor needs to be constantly resupplied. Incidents halt the nuclear
reaction and cannot lead to meltdowns or thermal runaways. Fusion could play a
crucial role in the transition of the energy supply as a carbon-free, safe, base load
capable source with high fuel energy density.

1.2 Plasma Confinement

The temperature T required for fusion to occur (about 10 keV) is orders of magnitude
above the binding energy of electrons in the potential of atomic nuclei (about 10 eV).1

Hence, atoms are fully ionized at these temperatures. Electrons and ions are not
bound to each other and form a plasma, which is the most common state of matter
in the universe.
Despite being composed of charged particles a fusion plasma is quasineutral on a
macroscopic level. Local charge imbalances are shielded on the Debye length scale
λD =

√
ϵ0T/e2n. Here, n is the plasma density, ϵ0 and e refer to the vacuum

permittivity and the elementary charge. A plasma is assumed to be much larger
than λD and the number of particles in a Debye cube of volume λ3D to be much
larger than 1. This ensures quasineutrality. The plasma exhibits collective effects
as reaction to long-range electric and magnetic fields.
In the hydrogen plasmas investigated in this thesis ions are much heavier than
electrons. Electrons with mass me perform oscillations against quasi-stationary ions
with the plasma frequency ωp =

√
e2n/ϵ0me. A thorough discussion of plasma

dynamics is given in chapter 2.
To reach thermonuclear temperatures a plasma must be heated. For a power plant
to produce a net energy output the power gained from the fusion reaction must
be larger than the required heating power. This demands not only a sufficient
temperature but an ample particle density and energy confinement time τE. The
product of these three quantities needs to be above a certain threshold for a fusion
reactor to deliver an energy surplus. A plasma is considered ignited if the heating
is entirely provided by the α particles from the fusion reaction. This is formulated
in the Lawson criterium [5]

nTτE > 3 · 1021 keV sm−3. (1.5)

At a fixed temperature of ≈ 10 keV two main pathways exist to fulfill the above
condition. Inertial confinement fusion aims at a high density and a comparably low
confinement time. Pellets of fuel undergo a fast compression and fuse. The com-
pressional force is provided by laser beams or via mechanical compression [6][7].

1In plasma physics the temperature T is usually given in the equivalent energy in eV.
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Magnetic confinement fusion utilizes a magnetic field to confine the plasma. This
approach leads to low densities but high energy confinement times. Magnetic con-
finement devices are the primary focus of this work.
In a magnetic field electrons and ions gyrate around the magnetic field lines which
provides confinement perpendicular to the field. To avoid end losses the field lines
are closed into a torus. The resulting magnetic field is not homogeneous leading to
drifts and charge separations causing a loss of confinement. A poloidal magnetic
field is required to short-circuit those charge imbalances and to provide sufficient
plasma confinement. The combined helical magnetic field lines trace out surfaces
on the poloidal cross section of the torus. These surfaces are called flux surfaces, as
the toroidal magnetic flux enclosed by them is constant. For a plasma equilibrium
in a toroidal confinement device the flux surfaces coincide with surfaces of constant
pressure if the resistivity of the plasma is neglected.
There are two main types of magnetic fusion experiments differing mainly in their
way of obtaining the poloidal field. Tokamaks have planar coils to create the toroidal
field. They drive a toroidal current inside the plasma via a central solenoid to pro-
duce the additional poloidal field components. This introduces an additional source
of free energy to the system which gives rise to disruptions and various other in-
stabilities. A constantly induced current requires an ever increasing voltage in the
solenoid which limits the operation time of conventional tokamaks.
There are developments for a stationary current drive by means of momentum trans-
fer from tangentially injected fast particles [8]. A current can also be driven by
coupling electromagnetic waves into the plasma, i.e. on the electron cyclotron res-
onance frequency or the lower hybrid resonance frequency (a longitudinal wave of
electrons and ions). These methods are called Electron cyclotron/lower hybrid cur-
rent drive (ECCD or LHCD), respectively. This approach is estimated to consume a
significant portion of the output power of a commercial tokamak but could provide
steady state confinement in a tokamak [9].
The stellarator is the other main toroidal magnetic field configuration. It creates its
poloidal field by breaking the axisymmetry of the magnetic field. This results in non-
planar coils creating both toroidal and poloidal field components. These coils pose a
significant engineering challenge. Early stellarators showed very poor performance
compared to tokamaks due to strong so-called neoclassical transport arising from
the non-axisymmetric magnetic field. The experiments Wendelstein 7-AS, HSX and
Wendelstein 7-X showed that numerical optimization of the coils reduces neoclassi-
cal transport and enables plasma confinement similar to tokamaks [10][11][12][13].
A stellarator is intrinsically steady-state capable and disruption free.
Current tokamaks and optimized stellarators are mostly limited in their performance
by turbulent transport. Steep pressure gradients at the boundary of the confined
plasma region drive turbulent instabilities which lead to outward heat and particle
transport. This reduces the confinement time and creates high heat loads on the
plasma facing components. Stellarators possess significantly more degrees of free-
dom in magnetic field design compared to tokamaks. This facilitates computational
optimization which aims to decrease turbulent transport in stellarators and to pos-
sibly exceed the performance of similarly sized tokamaks [14][15][16].
Beyond the last closed flux surface in a tokamak or stellarator, particles and heat
are primarily funneled along open field lines onto divertor plates which can sustain
the high heat flux where they are extracted from the device. This region is the
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scrape-off layer (SOL) where perpendicular transport is dominated by filaments or
blobs which are the main focus of this thesis [17][18][19].

1.3 Scope of this Thesis

The main topic of this thesis is the coherence of turbulent structures or blobs in the
SOL of stellarator plasmas. Heat and particles are transported radially outwards
by these structures. A common simplification is to assume blobs to be homoge-
neously elongated along a magnetic field line. This thesis investigates the limits of
this assumption. The propagation of filaments is affected by the inhomogeneous
nature of the stellarator’s magnetic field, particularly its curvature. The varying
curvature leads to an inhomogeneous drive for the filament propagation parallel to
the magnetic field. Parallel ohmic and inductive resistance limit the parallel current
in resolving this difference. These different effects decide whether a filament stays
coherent along a magnetic field line and are the focus of this thesis.
This chapter offered an overview on nuclear fusion, its relevance, mechanism and
technical execution. Chapter 2 features the differential equations used in this work
to model plasmas at the edge of fusion devices using the hot-ion hermes-2 model.
Chapter 3 presents the primary characteristics behind turbulence in neutral fluids
and plasmas. It describes the main regimes of plasma dynamics in a toroidal mag-
netic fusion experiment and focuses on the scrape-off layer and the propagation of
filaments. An overview on filament research in stellarators is presented. Chapter
4 introduces the BOUT++ framework which is used to simulate the hermes-2 model
equations. It presents differential operators and initial conditions for the numerical
simulations performed in this thesis and validates them with the different scalings of
the filament velocity with their size. The main effects determining the coherence of
a filament along a field line are investigated in Chapter 5. This is applied to realistic
geometries in the following chapter 6. Numerical simulations are performed for a
circular tokamak field line and a field line in the W7-X SOL. Chapter 7 summarizes
the findings and discusses them in the context of previous research.



Chapter 2

Plasma Dynamics

This chapter establishes the mathematical basis for modeling plasmas in the scrape-
off layer. First, the motion of single, charged particles in a magnetic field is in-
troduced. Section 2.2 discusses the collective description of plasmas and simplifies
the Boltzmann equation to the Braginskii fluid equations. The last section deals
with the assumptions specific to the hermes-2 model used in this thesis and gives
its evolution equations which are used in the following numerical simulations. The
influence of classical diffusion is briefly visited.

2.1 Single Particle Motion

The motion of a charged particle with charge q, mass m and velocity v in a magnetic
field B is governed by the Lorentz force

mv̇ = q (E+ v ×B) + F. (2.1)

Particles perform a gyration around the magnetic field lines in the absence of electric
fields E, other forces F and in a homogeneous magnetic field. Perpendicular to the
field they circle around the field line with the cyclotron frequency ωc = qB/m and the
Larmor radius ρ =

√
2Tm/|q|B. Parallel to the magnetic field particles move freely

with their initial parallel velocity component v∥
1. For many applications, only the

guiding center motion of the particle’s trajectory after averaging over one gyroperiod

(⟨v⟩ = ωc

2π

∫ 2π/ωc

0
v dt) is considered. An electric field, other forces or inhomogeneities

in the magnetic field cause drifts of the guiding center. Drift components ⟨v⊥⟩
perpendicular to the magnetic field can lead to charge separation inside the plasma
causing a loss of confinement.
Averaging over ensembles of many particles leads to the fluid picture of plasmas
which serves as a collective description of plasma dynamics. This will be discussed
in the next section and is used in the remainder of the thesis. Single particle drifts
must not simply be transferred to a collective picture without proper averaging.
Drifts in fluid models have a different mathematical appearance while displaying
similar physical mechanisms compared to drifts in the single particle picture [20].

1v = v∥ + v⊥; v∥ = (v ·B)B/B2; v∥ = b · v

12
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2.2 Fluid Models

A plasma not subject to quantum or relativistic effects can be described by a phase-
space distribution function fs(z, t) for each particle species s displaying the particle
density at a given point z = (x,v) in phase space across time t. Its evolution is
described by a continuity equation

∂tfs +∇z(żfs) = 0. (2.2)

with ż = (v, v̇) and the gradient with respect to position and velocity ∇z =
(∇x,∇v). This can be expanded by inserting v̇ = F/ms and splitting the force
term into the Lorentz force and short-range forces from collisions Cs,s′ between dif-
ferent species s and s′. This leads to the Boltzmann equation2

∂tfs + vs · ∇xfs +
qs
ms

(E+ v ×B) · ∇vfs =
∑
s′

Cs,s′ . (2.3)

Solving equation 2.3 provides a full kinetic description of the plasma dynamics.
Treating a problem with seven degrees of freedom at a sufficient resolution is a
computationally expensive task. There are different paths to simplify this equation.
Fusion plasmas are usually strongly magnetized [20]. The Larmor radius ρ is much
smaller than any macroscopic length scale. Averaging the Boltzmann equation over
the gyromotion reduces the dimensionality of the problem by one. Gyrokinetic codes
such as GENE exert this method to describe plasma turbulence in the core of magnetic
fusion devices [14][21][22]. As this thesis is concerned with turbulence on the edge
of fusion plasmas which is characterized by higher collisionality it utilizes a different
approach. Higher collisionality facilitates formation of local thermal equilibria for
a single particle species implying a Maxwell-Boltzmann distribution of the velocity.
Taking the moments of the Boltzmann equation with respect to the velocity leads
to a system of equations describing the evolution of averaged quantities such as the
particle density ns and the fluid velocity us

ns =

∫
fs d

3v, us =
1

ns

∫
vfs d

3v. (2.4)

The n-th moment of equation 2.3 is taken by multiplication with the n-th power of
the velocity and integration over velocity space

∫
vn (· · · ) d3v. This ansatz results in

the Braginskii equations which form the basis of several plasma turbulence models
like GRILLIX and hermes [23][24][25].
The zeroth moment of the Boltzmann equation results in the continuity equation

∂tns +∇ · (nsus) = 0. (2.5)

As the velocity dependence is averaged out, the gradient∇ is only taken with respect
to space. The first moment gives the equation of motion

nsms (∂t + us · ∇)us = −∇ps −∇ ·Πs + qsns (E+ u×B) +
∑
s′ ̸=s

Fs′,s. (2.6)

Changes in momentum can be driven by a pressure gradient ∇ps, the friction force
between different species s and s′ or a finite divergence of the viscous stress tensor

2using ∇x · v = 0 and ∇v · (E+ v ×B) = 0
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Πs = msnsv⊗v using the dyadic product (v ⊗ v)i,j = vivj. The tensor components
msnsvivj represent the flux of the i-th momentum component in the j-th direction.
It can be split into contributions from parallel, perpendicular and gyromotion

Πs = Π∥,s +Π⊥,s +Πg,s. (2.7)

The perpendicular and parallel contributions Π⊥,s and Π∥,s are small compared to
the gyroviscous partΠg,s and are ignored in the following hermes-2model equations.
Fs,s′ denotes the friction force between different species s and s′. The evolution
equation for the temperature Ts is obtained from the second moment

3

2
ns (∂t + us · ∇)Ts = −∇ · qs − nsTs∇ · us −Πs ⊗∇us +

∑
s′ ̸=s

Ws′,s. (2.8)

The temperature in the co-moving frame of the fluid changes in time by a finite
divergence of the heat flux qs, compression of the fluid flow, internal viscosity and
energy exchange between different particle species Ws,s′ .
The turbulent closure problem manifests in the above system of equations. By con-
struction, the n-th moment always encompasses a quantity whose evolution can only
be found by constructing the (n+1)-th moment. The continuity equation involves
the fluid velocity which is evolved in the first moment which depends on the pres-
sure (ps = nsTs). The temperature evolution depends on the heat flux qs which is a
third-order quantity. At some point the series has to be truncated and an evolution
equation for the next order quantity needs to be found from physical reasoning to
close the system.
Applying the cross product with B to equation 2.6 and neglecting terms for internal
viscosity and collisions with other particle species results in an expression for the
perpendicular drifts u⊥ in fluid models

u⊥ =
E×B

B2
− ∇ps ×B

qsnsB2
− ms

qsB
(∂tus + (us · ∇)us)×B. (2.9)

This expression uses (u×B) × B = −u⊥B
2. The first term of equation 2.9 is

the E×B drift uE. It is charge independent and creates no current except for high
frequencies which are not relevant for this thesis. The second term is the diamagnetic
drift udia,s. Pressure gradients create a charge dependent drift which can result in
an electric field. The third term is the polarization drift upol,s. The polarization
drift is the smallest of the drifts due to its prefactor ms/qs. Perturbation theory can
be applied to express it independent from the velocity. This thesis utilizes a second
order expression for the polarization drift [20]

upol,s =
msĖ⊥

qsB
− ms∇⊥ṗs

nsq2sB
2
. (2.10)

It is neglected in the continuity equation. The current it produces plays an important
role in ensuring quasineutrality and needs to be included in ∇ · j = 0 resulting in
equation 2.22. As upol,e is smaller than upol,i by a factor of me/mi its contribution
to the current balance is discarded.
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2.3 hermes-2

The hermes-2 model used in this thesis is based on the first three moments of
the Boltzmann equation 2.3 given above. These equations have to be formulated
for electron and ions. A number of simplifications and approximations has to be
applied. The model is based on the equations introduced by Simakov and Catto
[26]. Their ordering is discussed in the following to motivate the equations and the
regime of plasma physics they are valid for. A rigorous derivation of the model
equations is beyond the scope of this thesis.
The plasma is assumed to feature two separate length scales. The slowly varying
scale Ls connected to the curvature and gradients of the equilibrium magnetic field
and the quickly varying length scale Lf of the radial pressure gradients (Ls ∼ R0 ∼
a≫ Lf ). The major and minor radius of the toroidal plasma experiment are denoted
by R0 and a. The ratio between the length scales is therefore

ϵ =
Lf

Ls

≪ 1. (2.11)

The turbulent fluctuations are assumed to be strongly field aligned (k∥ ≪ k⊥) im-
plying k∥ ∼ L−1

s and k⊥ ∼ L−1
f for the parallel and perpendicular wavenumbers.

The ratio between thermal and magnetic pressure - the plasma beta

β =
2µ0p

B2
≪ 1 (2.12)

is assumed to be small. Fluctuations of plasma quantities as density or pressure are
assumed to be on the order of the equilibrium quantities. The fluctuations of the
magnetic field are consequently smaller by a factor of β compared to the equilibrium
magnetic field. Considering a magnetized, collisional plasma two small quantities
are defined to be of similar size

δs =
ρs
Lf

≈ ∆s =
λs
Ls

≪ 1. (2.13)

λs = vth,s/νs is the mean free path length of a species with the thermal velocity

vth,s =
√

2Ts/ms and the typical collision frequency νs. The Larmor radius is small
compared to the fast scale of the gradient scale. The mean free path length is small
compared to the scale of the device.
In order to include neoclassical expressions for the current, radial ion heat flux and
parallel ion velocity, terms are kept that are valid only for δi ≪ ∆i. This contradicts
the ordering but keeps important physical effects [26]. The frequencies are ordered
as

|ωc,s| ≫ νs ≫ Ω ∼ δ2i ωc,i. (2.14)

with Ω being the frequency of the physics of interest. The flow velocity us is as-
sumed to be small compared to the ion thermal velocity vth,i. As in the presence
of turbulence v∥,i ∼ (ϵ/δi) vth,i it is required that ϵ ≪ δi. Equation 2.14 leads to
ϵ≫ δi∆i

νi ≫ δ2i ωc,i ⇔
vth,iρi
ciλi

≫ δ2i ⇔ vth,i
ci

δiLf

∆iLs

≫ δ2i ⇒ ϵ≫ δi∆i, (2.15)
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assuming ion thermal velocity and sound speed to be of similar magnitude. There-
fore,

δi ≫ ϵ≫ δi∆i. (2.16)

The hermes-2model is the plasma fluid model used in this work. It is an extension of
the hermes model factoring in effects of a finite, evolving ion temperature Ti [24][27].
It uses the assumptions of a small β, magnetized, collisional plasma presented above
to simplify the Bragisnkii equations from section 2.2. The resulting model equations
evolve density n, electron pressure pe, ion pressure pi, parallel ion momentum nv∥,i,
vorticity ω as well as the electrostatic potential ϕ and the parallel component of
the vector potential ψ. The model also includes terms for interaction with neutral
particles which are dropped in the following as this thesis is not concerned with
neutral physics.
In fluid and plasma turbulence it is useful to introduce the vorticity ω as the rotation
of the velocity

ω = ∇× u. (2.17)

It is also convenient to introduce the magnetic unit vector b = B/B. The gradi-
ent operator of a scalar function f can be split up into parallel and perpendicular
components ∇f = ∇⊥f +∇∥f with ∇∥f = (∇f · b)b and ∇⊥f = ∇f −∇⊥f . In
later equation the parallel derivative ∂∥f = b ·∇f is needed. Wherever possible the
diamagnetic drift is replaced by the magnetic drift

vmag,s = −Te
qs

(
∇× b

B

)
(2.18)

which is numerically adventageous [24]. It replaces the diamagnetic drift e.g. in the
density equation where the relevant term is identical

∇ · (nvmag,e) = −1

e

(
∇× b

B

)
· ∇pe = ∇ · (nvdia,e) . (2.19)

The density evolution reads

∂tn = −∇ · (nvE + nvmag,e)−∇∥
(
nv∥,e

)
. (2.20)

The RHS terms correspond to the divergence of the particle fluxes from E × B,
diamagnetic drifts and parallel velocity. The polarization drift from equation 2.10 is
discarded as it is smaller by a factor of ωc,s. However, the resulting ion polarization
current is accounted for in the vorticity evolution 2.22.
The vorticity is simplified via the Bousinessq approximation which replaces the
density with a constant value n0 assuming density fluctuations to be much smaller
than potential fluctuations so that ∇ · (n∂t∇⊥ϕ) ≈ n0∂t∇2

⊥ϕ [28]. The vorticity
reads

ω = ∇ ·
(

1

B2
(n0∇⊥ϕ+∇⊥pi)

)
. (2.21)

This approximation is found not to have much impact on the dynamics of turbulent
plasma fluid simulations but improves computation time significantly [29]. The
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vorticity equation

∂tω = ∇ ·
(
(pe + pi)∇× b

B

)
+∇∥j∥ (2.22)

−∇ ·
(

1

2B2
∇⊥ (vE · ∇pi) +

ω

2
vE +

n0

2B2
∆⊥ϕ (vE + vdia,i)

)
+∇ ·

(
πci
2
∇× b

B
− 1

3

b×∇πci
B

)
.

results from quasineutrality (∇ · j = 0). The first three terms represent the diver-
gence of the diamagnetic, parallel and polarization current respectively. The addi-
tional contributions include cross-field and parallel viscosity.
The scalar gyroviscous stress tensor for ions is given by [27]

πci =
3mi

4piTi

(
0.20q2∥,i − 0.085q2i

)
(2.23)

+ 0.96
pi
νi
κ ·
(
vE + vdi + 1.61

b×∇Ti
B

)
− 2√

B
∂∥

(√
Bv∥,i

)
− 1.42

pi
√
B
∂∥

(√
Bq∥,i

)
−

0.49q∥,i
pi

(
2.27∂∥ lnTi − ∂∥ ln pi

)
.

The numerical prefactors in the ion gyroviscous stress tensor are derived by Brag-
isnkii [30]. The closures of this system is given by the parallel and total ion heat
fluxes[27]

q∥,i = −κ∥,i∂∥Ti, q2i =

(
κ2∥,i −

(
5

2
pi

)2
)(

∂∥Ti
)2

+

(
5

2
pi∇Ti

)2

. (2.24)

These expression are the Spitzer-Harm heat fluxes used in the popular transport
code SOLPS [31].

3

2
∂tpe =−∇ ·

(
3

2
pevE +

5

2
pevmag,e

)
− pe∇ · vE (2.25)

−∇ ·
(
3

2
pev∥,e

)
− pe∇∥v∥,e +∇∥

(
κ∥,e∂∥Te

)
+ 0.71∇∥

(
Tej∥

)
− 0.71j∥∂∥Te +

ν

n
j2∥

+∇ ·
(
ρ2e
τe

(
∇⊥pe +∇⊥pi +

11

12
n∇⊥Te

))
−Wi.

The electron pressure evolution includes advection by perpendicular and parallel
drifts as well as compression of E × B and parallel flows. There are terms for
parallel heat conduction, thermal force and thermal currents. It features collisional
cross-field transport on the scale of the Larmor radius and the electron collision time
τe. The collisional energy exchange between electrons and ions is given by

Wi =
3me

mi

n (Te − Ti)

τe
.
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The ion pressure evolution encompasses similar expressions for advection by and
compression of drifts and parallel velocity. The following terms are energy exchange
with diamagnetic flows, parallel viscous heating, parallel and perpendicular colli-
sional heat conduction, collisional resistive drift, heating via perpendicular viscosity
and collisional energy exchange with electrons:

3

2
∂tpi =−∇ ·

(
3

2
pivE +

5

2
pivmag,i

)
− pi∇ · vE (2.26)

−∇ ·
(
3

2
pibv∥,i

)
− pi∇∥v∥,i −

j∥
n0

∂∥pi

+
pi
n0

∇ ·
(
(pe + pi)∇× b

B

)
+ v∥,i

2

3
B

3
2∂∥

( πci
B3/2

)
+∇∥

(
κ∥,i∂∥Ti

)
+∇ · (κ⊥,i∇⊥Ti)

+
5

2
∇ ·
(
Tiρ

2
e

Teτe

(
∇⊥pe +∇⊥pi −

3

2
n∇⊥Te

))
− 3Ti

10τiB2
∇⊥ω · ∇

(
ϕ+

pi
n0

)
−
(
πci
2
∇× b

B
− 1

3

b×∇πci
B

)
· ∇
(
ϕ+

pi
n0

)
+Wi.

The parallel and perpendicular ion heat conduction coefficients are given by

κ∥,i = 3.9
piτi
mi

κ⊥,i = 2
nρ2i
τi
. (2.27)

Here, τi is the ion collision time. The parallel ion momentum equation

∂t
(
nv∥,i

)
=−∇ ·

(
nv∥,i

(
vE + bv∥,i + vmag,i

))
(2.28)

− ∂∥pe − ∂∥pi −
2

3
B

3
2∂∥

( πci
B3/2

)
+∇ ·

(
v∥,i

ρ2e
τeTe

(
(Te + Ti)∇⊥n+ n

(
∇⊥Ti −

1

2
∇⊥Te

)))
.

has terms for advection by the E × B drift, ion magnetic drift and parallel flow.
It comprises of parallel electron and ion pressure gradients, parallel ion viscosity as
well as collisional transport. Parallel currents j∥ are evolved according to Ohm’s law

∂t

(
me

mi

(
v∥,e − v∥,i

)
+

1

2
βeψ

)
= ∂∥ϕ− 1

n
∂∥pe − 0.71∂∥Te +

νj∥
n

(2.29)

+
me

mi

(
vE + bv∥,i

)
· ∇
(
v∥,i − v∥,e

)
.

It encompasses an electromagnetic induction term which is controlled by the elec-
tron plasma beta βe = 2µ0nTe/B

2. Currents can be driven by parallel gradients
in potential, pressure and temperature or a difference in electron and ion parallel
velocity. The hermes-2 model conserves the particle number N =

∫
dV n and an
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energy E

E =

∫
dV

min0

2

∣∣∣∣∇⊥ϕ

B
+

∇⊥pi
en0B

∣∣∣∣2 + 1

2
minv

2
∥,i (2.30)

+
3

2
(pi + pe) +

1

4
βe |∇ψ|2 +

mi

2me

j∥
n
.

The first three terms are ion kinetic energy from E × B, diamagnetic and parallel
flows. Electron kinetic energy can be neglected as its smaller by a factor me/mi.
Additional contributions come from ion and electron thermal energy as well as the
electromagnetic energy.
hermes-2 contains self-consistent expressions for classical diffusion in the equations
for density, vorticity, electron and ion pressure as well as parallel momentum. This
avoids the introduction of unphysical, numerical diffusion coefficients [32]. These
terms are motivated by a classical random walk ansatz for the particle motion per-
pendicular to the magnetic field. The typical increment is the Larmor radius. For
example, the diffusion term for the electron pressure reads

∂tpe = ...+∇ ·
(
ρ2e
τe

(
∇⊥pe +∇⊥pi +

11

12
n∇⊥Te

))
. (2.31)

Contributions from classical diffusion are very small. Figure 2.1 shows the density

Figure 2.1: The influence of classical diffusion on a filament simulation after
1000/Ωc,i. Contributions from diffusion terms lead to a faster flattening of a pressure
perturbation. This effect is very small compared to turbulent advection.

profile of a filament simulation presented in the later chapters for two cases. The
classical diffusion coefficients are set to zero for one of the two simulations. If clas-
sical diffusion is turned on the density peak is slightly lower as it diffuses into the
area of lower density. This effect is small compared to the convective terms in the
equations after a relevant timescale (1000/ωc,i).
This chapter discussed the foundation to model plasmas in low β, collisional, mag-
netized plasma as they are found in the edge and scrape-off layer of fusion plasmas.
Turbulence and filaments are discussed in the next chapter establishing the main
research topic of this thesis.



Chapter 3

Plasma Turbulence and Coherent
Structures

This chapter introduces filaments - a source of turbulent losses in toroidal magnetic
fusion devices. Filaments are the main topic of this work. A visit to the basic
concepts of turbulence in neutral fluids in section 3.1 is followed by an introduction
to the main regimes of turbulence in toroidal magnetic fusion experiments in section
3.2 from the core to the plasma edge and scrape-off layer where filaments are born
and propagate. Section 3.4 discusses the basic mechanisms and scalings of filament
motion. Simplified scaling laws for the velocity are derived in 3.5. Sections 3.6 and
3.7 discuss the effects of a varying curvature and the parallel current evolution on
filament dynamics. Section 3.8 gives an overview of the research on filaments in
stellarators.

3.1 Turbulence in Neutral Fluids

Turbulence is a phenomenon of fluid motion. Fluctuations over a wide range of
length scales produce a chaotic, seemingly arbitrary behavior. Turbulence happens
on all scales in nature. It appears in the gas clouds of galaxies, the convection zone
of stars, the storms in the atmosphere of Jupiter or the mixing of milk and coffee in
a cup.
A complete quantitative understanding of turbulence is yet to be developed. Never-
theless, it has fascinated people across the centuries appearing in various pieces of
artwork. Van Gogh’s famous starry night captures stars at the night sky as whirling
eddies of light that seem to flow over the painting. A comparison between eddies in
starry night and measurements of turbulence in star formation found a surprising
similarity between the luminosity wavenumber spectrum in these two datasets [33]1.
The motion of neutral fluids with mass density ρ, flow velocity u and viscosity η are
described by the Navier-Stokes equations

ρ (∂t + (u · ∇))u = −∇p+ η∆u. (3.1)

The above equation can be understood from momentum conservation. The left hand
side represents mass density times acceleration. The right hand side consists of a

1It is worth noting that the authors found the turbulent cascade in most paintings of van Gogh’s
’turbulent period’ but not in his other work. This is the same period where van Gogh famously
cut off his ear. He seemingly grasped the nature of turbulence for a short period in his life

20
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Figure 3.1: Van Goghs starry night. Light is depicted by very distinct, broad
brushstrokes capturing its flickering motion on the night sky. Stars are whirling
eddies. Only paintings from van Goghs era of psychotic agitation are shown to
possess luminosity characteristics similar to nature [33]. Digital version provided by
the New York metropolitan museum of modern arts [34].

pressure term and the internal resistivity of the fluid. Fluid flows show very distinct
behaviour depending on the scale and flow velocity of the system. Equation 3.1
can be normalized to the typical length scale L, the typical flow velocity U and the
corresponding time scale T = L/U to obtain dimensionless equations

u′ =
u

U
, t′ =

t

T
, p′ =

pT 2

ρL2
,

⇒ (∂t′ + (u′ · ∇′))u′ = ∇′p′ +
1

Re
∆′u′. (3.2)

The control parameter of this equation is the Reynolds number Re determining the
regime of the fluid flow. It can be understood as the ratio between the non-linear
term and the viscous friction term in equation 3.1.

ρ (u · ∇)u

η∆u
∼ ρUL

η
= Re. (3.3)

The former term is quadratic in the flow velocity and transports energy between
the scales while the latter dissipates energy out of the system into the random
field. A low Reynolds number is associated with quiescent, laminar flow without the
creation of eddies. Systems with higher Reynolds numbers show irregular, turbulent
behaviour. The difference of flows around a cylinder with varying Reynolds numbers
is shown in figure 3.2.

3.2 Plasma Turbulence

Plasmas in magnetic fusion experiments are subject to turbulence as well as neutral
fluids are. However, a plasma encompasses at least two particle species - electrons
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Figure 3.2: A flow around a solid cylinder at different Reynolds numbers (Re = 9.6,
2000, 10000 from top to bottom). At low Reynolds numbers the viscosity dominates
and the flow is laminar. Higher Reynolds numbers cause increasingly stronger eddie
formation and irregular behaviour. Pictures from [35].
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Figure 3.3: Different turbulence regimes in a tokamak. The turbulence in the core is
mostly driven from electron and ion temperature gradients as well as trapped elec-
trons. In the scrape-off layer the transport from filamentary structures dominates.
Their advection is driven by a charge separation induced from the curvature. This
is called interchange drive. Figure from [36].

and ions - with two different pressures pe, pi which are subject to electromagnetic
forces given by the potentials ϕ and ψ. The density n of the two species is identical
due to quasineutrality. Turbulent fluctuations occur in all quantities and there are
transfer channels between all of them. In neutral fluid turbulence usually only the
flow field u is of interest. Plasma turbulence needs to take into account all the
different fields and their interplay.
There are several distinct regimes of plasma turbulence in a fusion relevant toroidal
experiment. In the core the temperature is very high (∼ 1...10 keV). Particles experi-
ence very few collisions. This enables non-Maxwellian velocity distribution functions
to persist which requires a kinetic treatment. Plasma dynamics in the core are usu-
ally described by kinetic and gyrokinetic models derived from equation 2.3 and its
gyroaverage. At the edge of the confined region of the plasma steep temperature
and density gradients fall off within only a few centimeters around the last closed
flux surface. Further out the field lines are no longer closed around the torus but
intersect the wall of the vacuum chamber forming the scrape-off layer (SOL). In
the edge and SOL temperatures become lower and collisionalities higher enabling a
fluid approach. A plasma in this parameter regime can be described with equations
similar to the Navier-Stokes equations for neutral fluids. Similar to neutral fluids
turbulence in plasma physics taps the free energy in the pressure gradients. In fusion
experiments the gradient of the ion temperature (ITG) gives a strong contribution
to particle and heat transport [37][38]. Similar to the propagation of filaments dis-
cussed below a background pressure gradient parallel to the curvature vector of the
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magnetic field leads to a finite divergence of the diamagnetic current creating charge
separation and radial transport due to the resulting E×B drift.

3.3 Filaments in the Scrape-off Layer

Beyond the last closed flux surface gradients are weak and the turbulence is driven
by transport due to coherent structures expelled from the confined region. Coher-
ent structures in the SOL of fusion plasmas are called filaments or blobs. These
coherent plasma structures have a size on the order of one centimeter perpendicular
to the magnetic field. Blobs are typically aligned to the background magnetic field
B and advected radially outwards. They are emitted and propagate a distance sev-
eral times their own diameter transporting heat and particles from the edge into the
SOL to drive turbulent dynamics in this region. This process is known as turbulence
spreading and has been observed e.g. in the COMPASS tokamak [39]. Turbulence

Figure 3.4: 3-dimensional image of a blob along a field line on the outboard side of
a tokamak (left) and poloidal crosssection of the blob (right) [40].

in the SOL is therefore dependent on edge dynamics but can vice versa influence
this region. The interplay between these two different regimes of plasma dynamics
is beyond the scope of this thesis. Simulations in the following chapters initialize
a plasma blob on an open field line in the SOL and investigate its propagation. It
features a monopole density perturbation with a maximum of several times the back-
ground density providing a loss channel for heat and particle transport in toroidal
confinement devices [41].

3.4 Propagation Mechanism of Filaments

In this section the basic mechanism of filamentary transport is introduced. A pres-
sure perturbation and the curvature or gradient of the magnetic field lead to a finite
divergence of the diamagnetic current and a charge separation creating a potential
dipole. The resulting electric field advects the pressure perturbation radially out-
wards via the E × B drift. This is the fundamental mechanism driving filament
motion. The charge accumulation drives currents to ensure the quasineutrality con-
dition ∇ · j = 0. The currents reduce the potential dipole limiting the drive for
propagation.
The dipole potential can be resolved either perpendicular to the magnetic field via
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Figure 3.5: Basic mechanism of filament motion. A positive density perturbation
(left) on the outboard size of a tokamak causes a charge separation (middle) which
leads to a radial E×B advection of the density perturbation (right) [40].

the polarization current or via parallel currents if the filament intersects the wall.
As the electron flow onto wall elements is larger than the ion flow, the sheath - a
conductive layer - develops, connecting the two parts of the dipole [42]. The poten-
tial dissipation determines the propagation regime of the filament. These different
regimes will be discussed in section 3.5
Simple blob models usually rely on the cold ion assumption (Ti = 0) [24][43]. This
is not consistent with experimental findings in the SOL of e.g. ASDEX Upgrade
(AUG). Ion temperatures are 2-3 times higher than electron temperatures [44]. A
strong ion pressure perturbation creates a contribution to the potential via the ion
polarization current in the vorticity in equation 2.21. This has been shown in sim-
ulations [45]. In hermes-2 the electrostatic potential ϕ is determined by inverting
the vorticity definition. The perpendicular Laplace operator needs to be inverted
numerically. This is indicated by ∇−2

⊥ . The equation to calculate the potential then
reads

ϕ =
1

n0

(
B2∇−2

⊥ ω − pi
)
. (3.4)

If the ion pressure contribution dominates, the potential becomes monopolar. The
corresponding E × B drift leads to a rotating motion If the monopole and dipole
part of the potential are of similar size the rotation leads to a significant part of the
filament advection being in poloidal direction as illustrated in Figure 3.6.
Knowing the basic mechanisms of filament motion analytical scaling laws for the
velocities can be derived in the next section. Different scaling regimes arise for each
dominant mechanism of the potential dissipation. These are the polarization current
for hot and cold ions and the parallel current.

3.5 Velocity Scalings

Quantitative scaling laws for filaments can be obtained by applying the blob corre-
spondence principle [18] [41]. Gradient and time derivative operators are replaced
by average blob quantities. Perpendicular gradients are assumed to scale as δ−1

⊥ with
δ⊥ being the perpendicular diameter of the filament. The typical blob velocity is vb
and the corresponding timescale is τb = δ⊥/vb. The expression for the perpendicular
potential gradient ∇⊥ϕ assumes the E×B drift to be the dominant part of the blob
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Figure 3.6: Propagation of a blob with cold (top) and hot ions (bottom). The
pictures on the left show the relative density. On the right the normalized potential
eϕ/T is displayed. Hot ions lead to a monopole contribution to the potential (bottom
right). The trajectory of the filament gets tilted (bottom left). The axis x and z
denote the normal (radial) and binormal (poloidal) direction with respect to the
magnetic field.

velocity

∇⊥ → i

δ⊥
, ∂t →

iδ⊥
vb
, ∇⊥ϕ→ vbB. (3.5)

This is used to rewrite the vorticity equation 2.22 in terms of these characteristic
quantities. Only the terms related to the divergence of the ion polarization, diamag-
netic and parallel currents are considered. These are behind the primary mechanisms
of blob propagation. The higher order terms in the ion polarization current as well
as cross-field and parallel viscosity are neglected. The simplified vorticity equation
reads

∂t

(
∇ ·
[
1

B2
(n0∇⊥ϕ+∇⊥pi)

])
= ∇ ·

(
(pe + pi)∇× b

B

)
+∇∥j∥. (3.6)

The ion polarization current on the RHS of the above equation contains a contri-
bution from the ion pressure as explained in section 3.4. The ratio between ion
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and electron temperature is τi. Applying the relations from 3.5 and discarding the
parallel current leads to

− vb
B2δ2⊥

(
−n0vbB +

i

δ⊥
τipe

)
= − 2i

Bδ⊥
(1 + τi)κ pe (3.7)

⇔
(
vb − i

τi
2δ⊥n0B

pe

)2

= −
(

τi
2δ⊥nB

pe

)2

− i
2δ⊥B

n0

(1 + τi)κ pe.

The expression for the curvature is simplified as ∇× b/B ≈ 2/B (b× κ) ∼ 2κ/B
if only a constant curvature perpendicular to the magnetic field is considered. The
case of inhomogeneous curvature is discussed in the following section. The above
equation can be abbreviated (

vb − i
√
f
)
= −f − ig. (3.8)

f determines the contribution of the ion pressure perturbation to the potential while
the curvature drive is captured in g. These two terms read

f =

(
τi

2δ⊥n0B
pe

)2

(3.9)

g =
2δ⊥B

n0

(1 + τi)κ pe.

Multiplying with the complex conjugate and solving for vb gives

|vb| =
√√

f 2 + g2 − f. (3.10)

Neglecting hot ion terms (g ≫ f) the conventional inertial scaling for blob velocity
is obtained

|vb| =
(
2peδ⊥
n0

κ

) 1
2

. (3.11)

If the hot ion contribution in the polarization is dominating (f ≫ g) the blob is in
the ion pressure dominated inertial regime. Its velocity scales as follows after taylor
expanding the inner square root

|vb| =

√√√√f

√
1 +

g2

f 2
− f ≈

√
f

(
1 +

g2

2f 2

)
− f =

1

2

√
g2

f
= 2

(1 + τi)

τi
Bδ2⊥κ. (3.12)

If the parallel current dominates the velocity scales as δ−2
⊥ . Depending on the regime

the parallel current is either limited by sheath resistance, ohmic resistance or electro-
magnetic inductance. Assuming for simplicity the first order sheath closure model
1/e∇∥j∥ = nϕ/L∥ [46] and neglecting both inertial and hot ion contributions in
equation 3.6 gives the Krashenninikov [17] scaling for sheath limited filaments with
an additional factor of (1 + τi) to include the finite ion temperature

|vb| =
2L∥

δ2⊥
(1 + τi)κ pe. (3.13)

The calculations in this section have been performed analogously for the DALF
model [47]. Similarly to hermes-2 it describes physics in the edge and SOL by
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means of fluid equations. In contrast, it employs a different ordering and therefore
it includes different effects, namely MHD and interchange dynamics. DALF only
evolves the fluctuations, not the background of quantities.
Three different scalings of the velocity with the perpendicular blob size δ⊥ were de-
rived in this section. If the parallel current j∥ dominates over the polarization current
the velocity scales as δ−2

⊥ . If the ion pressure contribution to the polarization dom-
inates a scaling of vb ∼ δ2⊥ is found. If the polarization current dominates and the

ions are cold the velocity scales as δ
1/2
⊥ . All scaling laws assume a constant curva-

ture and parallel homogeneous filaments. The following chapters introduce parallel
curvature variations which modify the filament drive as well as the dynamics of the
parallel current. It is investigated how these parallel inhomogeneities influence the
blob motion.

3.6 Varying Curvature

The curved nature of magnetic field lines in tokamaks and stellarators drives blob
propagation. More precisely it is determined by the divergence of the diamagnetic
current. It can be rewritten as

∇ · jdia = ∇ ·
(
b×∇p
B

)
=

(
∇× b

B

)
· ∇p (3.14)

=

(
2

B
b× κ+

2

B2
b×∇B

)
· ∇p.

where κ = b ·∇b = b× (∇× b) is the magnetic curvature [48]. A pressure gradient
parallel to b×κ or b×∇B leads to a charge accumulation due to a finite divergence
of the perpendicular current. A magnetic field gradient is linked to the curvature
via [49]

κ = b×
(
∇× B

B

)
= −b× µ0j+ b×∇B

B
(3.15)

=
µ0∇p
B2

+
∇⊥B

B
.

In this thesis the perpendicular gradient in the magnetic field is neglected as it is
assumed to vary only weakly on the perpendicular scale of the simulation domain
of only 0.1m.
. The curvature of a magnetic field line can be split up into its normal and geodesic
components. The normal curvature κn quantifies to which extent the curvature
vector is normal to the flux surface

κn = n · κ. (3.16)

The vector n is the normal vector of the flux surface. The geodesic curvature κg
describes the part of the curvature tangential to the flux surface

κg = (n× b) · κ. (3.17)

The total curvature is given by κ2 = κ2g + κ2n [49]. In toroidal magnetic confinement
devices the radial magnetic field vanishes. To illustrate the curvature of twisted
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Figure 3.7: The normal and geodesic curvature components for a helical magnetic
field line [50]. The normal curvature is the scalar product of κ and n. The geodesic
curvature is the scalar product of the curvature with the tangential vector of the
flux surface (n× b) which is denoted here as g

Figure 3.8: An illustration of the toroidal coordinate system used in this section
[51]. r denotes the radial component originating from the center of the poloidal
cross section. The poloidal and toroidal angles are given by θ and ϕ. Looking from
above ϕ runs counterclockwise.

magnetic field lines in a toroidal geometry the curvature of a simple tokamak with
circular cross section is calculated. Naturally, torus coordinates (r, ϕ, θ) are used.
The radial component is with respect to the center of the cross section of the torus
while ϕ and θ denote toroidal and poloidal angles. Its major and minor radii are
R0 and a respectively. The safety factor q = Bϕa/BθR0 indicates how often a field
line turns around the torus toroidally while performing one poloidal turn. The
transformation between cartesian (x, y, z) and torus coordinates (r, ϕ, θ) reads

x = (R0 + r cos(θ)) cos(ϕ) (3.18)

y = sϕ (R0 + r cos(θ)) cos(ϕ)

z = sθ r sin(θ)

There are two additional factors sϕ and sθ. The natural choice is sϕ = sθ = 1.
However, in this case the coordinate system is left-handed. To achieve a right-handed
coordinate system the poloidal direction is reversed so sϕ = 1 and sθ = −1. The
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basis vectors can be constructed via ei = ∂ir with the position vector r = (x, y, z)T

êr =
∂r

∂r
=

cos(θ) cos(ϕ)
cos(θ) sin(ϕ)
− sin(θ)

 , (3.19)

êϕ =

− (R0 + r cos(θ)) sin(ϕ)
(R0 + r cos(θ)) cos(ϕ)

0

 ,

êθ =

−r sin(θ) cos(ϕ)
−r sin(θ) sin(ϕ)

−r cos(θ)

 .

From the basis vectors the metric tensor gij = êi · êj is calculated. As the basis
vectors are orthogonal the metric tensor becomes diagonal.

g =

1 0 0

0 (R0 + r cos(θ))2 0
0 0 r2

 (3.20)

The vacuum magnetic field vector, the unit vector and the field strength of a circular
tokamak in toroidal and poloidal coordinates read [52]

B = B0

 0
1− r

R0
cos(θ)

r
qR0

(
1− r

R0
cos(θ)

)
 , b =

1√
1 + (r/qR0)

2

 0
1
r

qR0

 , (3.21)

B = B0

(
1− r

R0

cos(θ)

)√
1 +

(
r

qR0

)2

.

The curvature κ = b · ∇b is expressed for orthogonal coordinates [53]

(b · ∇b)i =
∑
k

[
bk√
gkk

∂bi
∂xk

+
bk√
gkkgii

(
bi
∂
√
gii

∂xk
− bk

∂
√
gkk

∂xi

)]
. (3.22)

Inserting the expressions for the magnetic field from equation 3.21 one obtains

κ =
1

1 +
(

r
qR0

)2
− r

q2R2
0
− cos(θ)

R0+r cos(θ)

− r sin(θ)
qR0(R0+r cos(θ))

sin(θ)
R0+r cos(θ)

 (3.23)

For a circular tokamak the normal vector on the flux surfaces is n = (1, 0, 0)T. The
tangential vector reads

n× b =
1√

1 +
(

r
qR0

)2
 0
− r

qR0

1

 . (3.24)
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Figure 3.9: Normal and geodesic curvature for a circular tokamak with AUG pa-
rameters (R0 =1.6m, r=0.5m, q=4). Normal curvature is minimal for the outboard
side (θ = 0) of the tokamak and maximal on the inboard side (θ = π). Geodesic
curvature is highest on the upper side (θ = π/2) on the tokamak while being mini-
mal on the lower side (θ = 3π/2).

Following equations 3.16 and 3.17 the geodesic and normal curvature components
can be calculated

κn = κ · n = − 1

1 +
(

r
qR0

)2 ( r

q2R2
0

+
cos(θ)

R0 + r cos(θ)

)
, (3.25)

κg = κ · (n× b) =
1√

1 +
(

r
qR0

)2 sin(θ)

R0 + r cos(θ)
.

In the limit of large aspect ratios (R ≫ a) this simplifies to

κn = −cos(θ)

R0

, κg =
sin(θ)

R0

. (3.26)

The curvature for any helical magnetic field line is not homogeneous. Parallel vari-
ations in the curvature lead to a modified polarization as the divergence of the
diamagnetic current varies along the field line. The curvature of a circular tokamak
is calculated in this section. The curvature of a stellarator is more complicated due
to the non axisymmetric magnetic field. The curvature of a W7-X fieldline is dis-
played in figure 3.10. It features regions of negative curvature and sharp localized
spikes of high curvature. The next section investigates the parallel dynamics which
determine the currents resolving the parallel potential gradient.

3.7 Parallel Dynamics

Inhomogeneous polarization in a filament along a field line is driven by the parallel
varying curvature κ. This leads to a parallel potential gradient ∂∥ϕ which causes a
response of the parallel current. Neglecting the parallel momentum contributions
due to the me/mi prefactor in equation 2.29 a simplified version of Ohms law is
obtained

∂∥ϕ =
1

2
βe∂tψ − ν

n
j∥ +

1

n
∂∥pe + 0.71∂∥Te. (3.27)
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Figure 3.10: Normal and geodesic curvature of a field line in W7-X. The stellarator
magnetic field possesses regions of negative normal curvature as well as sharp local-
ized spikes. This field line crosses the line of sight of a Gas Puff Imaging diagnostic
in W7-X. Field line data from IPP-Webservices [54].

A parallel potential gradient ∂∥ϕ drives parallel currents j∥ which are limited by
Ohmic resistance determined by collisionality ν

n
j∥ and the inductance term βe∂tψ/2.

Both terms increase the propagation time of the parallel current which has been
confirmed in analytical and numerical work on cold-ion blob cases [55] [56] [57].
Usually, it is assumed that blobs are homogeneous along a field line [41]. A long
propagation time of the parallel current defies this assumption.
The mechanism that determines the parallel coherence of a turbulent structure can
be summarized as follows: A pressure perturbation is aligned to a field line with
parallel varying curvature. It experiences an inhomogeneous polarization from the
varying and finite divergence of the diamagnetic current. The strength of the charge
separation along a field line varies due to differing polarization resulting from varying
curvature. This leads to differential E×B drift between different toroidal positions.
The parallel potential gradient drives parallel currents which are limited by Ohmic
resistance and inductance. A schematic view of a filament and its current balance
is shown in figure 3.11. Two competing timescales arise: The blob advection time
and the propagation time of the parallel current. If the local E × B drift pushes
the filament apart faster than the parallel current flattens the parallel potential
gradient, the structure is ripped apart. If the parallel current is strong enough the
blob will remain coherent. This leads to the main research question of this work:
For which parameters regimes does a parallel variation in the curvature decorrelate
the filaments along the field line?

3.8 Filaments in Stellarators

Filaments are a well known channel of particle and heat loss in tokamaks [41]. Ex-
tensive experimental and numerical studies have been performed to validate the
propagation models described in section 3.5 [47]. Measurements of blob densities
and temperatures have been taken via various methods [44][58][59]. The database
on turbulence in stellarators is small compared to tokamaks as there are fewer ma-
chines. The dipole polarization of a poloidal pressure perturbation is observed via
a phase shift between floating potential and ion saturation current measurements
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Figure 3.11: The current balance of a filament in an equivalent circuit analogous
to [18]. The potential dipole is resolved perpendicular to the magnetic field via
the polarization current and the parallel current. The parallel current is limited by
the sheath resistance ηsh, the Ohmic resistance ν and electromagnetic induction.
Ohmic resistance is controlled by the collisionallity ∋. Inductance is controlled by
the electron plasma beta βe.

Figure 3.12: Parallel connection length in W7-X for different magnetic configura-
tions. The island divertor leads to highly varying L∥ profiles [65].

e.g in W7-AS [60]. Filamentary field-aligned structures which are connected to the
sheath have been observed in the stellarators W7-AS and TJ-K [61][62][63]. In TJ-
K blobs contribute as much as 30% of the total particle transport in the SOL and
show a poloidal velocity component originating of a polarization via the geodesic
curvature [62]. Poloidal propagation has also been observed in W7-AS and LHD
which is found to be triggered by a finite radial shear of the magnetic field [63][64].
Experimental investigations with Langmuir probes found filamentary structures in
W7-X to propagate slowly in radial direction due to the large major radius com-
pared to AUG (Rmaj =6m vs. 2.5m with similar minor radius of 0.5m). Scalings of
the velocity with the perpendicular blob size show quantitative agreement despite
neglecting the inhomogeneous curvature drive [66]. The island divertor of W7-X
produces a highly varying profile of the parallel connection length as illustrated in
figure 3.12. It determines the magnitude of the parallel current and the propagation
regime of the filament. Numerical studies suggest that this leads to blobs changing
their propagation regime provided they are still coherent enough by the time they
propagate into the region of the aprupt change of the parallel connection length
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L∥ [67]. The question of filament coherence for varying curvature has been tackled
with cold filaments for pellet relevant conditions [68]. A non-uniform propagation
is caused by non-uniform curvature drive. An increase in temperature is shown to
lead to more coherent filaments. Filaments seem to propagate slower compared to
tokamaks. Parallel varying curvature could decorrelate coherent structures along a
fieldline.
The following chapters investigate the influence of varying curvature on filaments
for sinusoidal, tokamak and stellarator cases as well as the relevant parallel plasma
dynamics by means of numerical simulations.



Chapter 4

Simulation Setup and Benchmarks

This chapter starts with a description of the BOUT++ numerical framework which
is used to simulate the hermes-2 model equations described in section 2.3. In
section 4.2 the numerical methods used specifically in this thesis are briefly discussed.
Section 4.3 lists the initial conditions used for the simulations in this thesis. Section
4.4 reproduces the different scalings of filaments velocity with the blob size for hot
and cold ion cases.

4.1 The BOUT++ Framework

BOUT++ is a framework to simulate nonlinear differential equations for plasmas and
fluids in curvilinear coordinates [69][70]. It is used to simulate a variety of dif-
ferent physics models. Those include resistive MHD models [71], neutral physics
investigating nitrogen seeding [72] and the physics of filaments in the SOL [67][73].
Its main design aim is to decouple modeling and simulation of physical processes
from numerical implementation. Differential operators have an intuitive nomencla-
ture easing implementation. For instance, the common Hasegawa-Watakani model
[74][75] for electrostatic drift wave turbulence1

∂tñ+ {ñ, ϕ̃}x,z = −κ∂ϕ̃
∂z

+ Ĉ(ñ− ϕ̃) (4.1)

∂tω + {ω, ϕ̃}x,z = Ĉ(ñ− ϕ̃) (4.2)

reads in BOUT++ syntax

ddt(n) = -bracket(phi, n) - kappa*DDZ(phi) + C*(phi - n);

ddt(vort) = -bracket(phi, vort) + C*(phi - n);

In this model ñ and ϕ̃ denote density and potential fluctuations. The control pa-
rameters are the parallel coupling strength Ĉ and the inverse fall-off length of the
background density gradient κ = 1/Ln = |∇n0/n0|.
In the following chapters the BOUT++ framework is used to simulate the hermes-2

model equations. The next two sections describe the specific numerical methods
and initial conditions used during this work.

1{...}i,j refers to the Poisson brackets with {f, g}i,j = (∂if)(∂jg)− (∂jf)(∂ig)

35
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4.2 Differential Operators

The fluid equations used in this thesis contain first derivatives in time and up to
third order spatial derivatives. All spatial derivatives are computed via 4-th order
finite volume schemes. The electrostatic and parallel vector potential ϕ and ψ
are computed via Laplacian inversion using Petsc [76][77][78]. All of these steps
compute the right hand side (RHS) of the equations. Finally the time evolution is
implemented via the ODE solver PVODE solving equations of the form

df

dt
= RHS(f,∇if, g,∇ig, ...). (4.3)

In this thesis the coordinate system is designed as follows: The radial direction is
labeled with x. y is the parallel coordinate and z is the binormal direction. The x-
direction requires 2 guard cells on each side to calculate the finite volume derivatives.
The z-direction has periodic boundary conditions by design.

4.3 Initial Conditions and Simulation Outputs

In this section the necessary initial conditions to the hermes-2 model are presented
to investigate the coherence of turbulent structures subject to inhomogeneous cur-
vature. The simulations are performed on a rectangular grid with the number of
grid points being (nx, ny, nz) = (132, 16, 128) in most cases. The corresponding grid
spacing is (dx, dy, dz = (L⊥/(nx − 4), L∥/ny, L⊥/nz). The perpendicular domain
width L⊥ was chosen to inset the cross section of the filament with a sufficient dis-
tance to the boundary. It is on the order of 0.1m. L∥ is the parallel connection
length which is equivalent to the parallel domain width for open field lines. In the
following chapters it ranges from 10m to 200m. At the parallel upper and lower
boundary the dynamics of plasma interaction with the sheath have to be modeled.
This thesis employs the Bohm sheath model

v∥,i ≥ cs, ∂∥n = ∂∥Te = ∂∥ϕ = 0. (4.4)

It assumes supersonic parallel ion flow v∥,i onto the sheath and zero gradients for
the other fields.
Quantities in hermes-2 are normalized to a reference density N , temperature T
and magnetic field B which is fixed at 2.5T. The parameters determining parallel
dynamics are the electron plasma beta βe and the collisionality ν. In the hermes-2
model these parameters cannot be changed directly but have to be changed by
modifying the above normalization parameters. Expressions for βe and ν read

βe =
2µ0NT

B2
and ν =

1

1.96τemi/me

(4.5)

where τe is the electron ion collision frequency

τe =
1

2.91 · 10−6 (N/106)λe,i T−3/2
, λe,i = 24− log(

√
N/106 / T ). (4.6)

A filament is initialized as a Gaussian perturbation in the density and the electron
and ion pressure fields perpendicular to the magnetic field. Initially it is homo-
geneous parallel to the magnetic field. The input parameters for a filament are
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Figure 4.1: The COM of a filament is plotted onto the blob density distribution
during its propagation at one poloidal plane. It is used as a measure for the position
of the blob. The time is in units of 1/ωc,i. The trajectory of the COM is indicated
by the white line. The current position is marked by a cross.

the amplitude of the density and pressure perturbations as well as the blob size
δ⊥. It represents the standard deviation of the Gaussian perturbation. The initial
condition for the normalized density reads

n(x, y, z, t) = 1 +
√
2πδ2⊥

√
(2π)3 δ2⊥e

− (x−0.5)2

2δ2⊥ e
− (z−π)2

4π2δ2⊥ . (4.7)

In BOUT++ the x direction is normalized to 1. z is normalized to 2π. This leads to
the seemingly different standard deviations between the Gaussian distributions in x
and z direction in the initial condition to create a symmetric blob. The simulation
outputs are 4 dimensional arrays with axis (t, x, y, z) of size (tmax, nx, ny, nz) for each
field. The position r(ti, yi) and perpendicular velocity v(ti, yi) of the center of mass
(COM) of a filament for each poloidal plane is determined from the density field

r(ti, yi) =

nx,nz∑
i,j

ni,j, ri,j and v(ti, yi) =
r(ti)− r(ti+1)

ti − ti+1

. (4.8)

These are the relevant quantities to investigate the scaling of the filament velocity
and to asses the coherence of plasma filaments along a field line with varying curva-
ture which is done in the following sections. The curvature is obtained for a single
field line and assumed to be constant over the entire perpendicular domain.

4.4 Scalings

In section 3.5 different regimes for filament propagation are derived. In this section
these are reproduced by numerical simulations of the hermes-2 model. If parallel
effects are discarded the charge separation is countered by the polarization current
only. It has contributions from the time derivative of the perpendicular potential
and ion pressure perturbation. If the former term dominates the filament velocity
is expected to scale as δ

1/2
⊥ . For the latter term being larger, this leads to a vb ∼ δ2⊥

scaling.
The parameters in these simulations are chosen as T = 10 eV, N = 1018m−3. These
are aligned with the parameters found in [44][58]. A scan with hermes-2 simulations
of the perpendicular blob size from 0ρ to 60ρ is displayed in figure 4.2. The amplitude
of the density and temperature perturbation is 100% compared to the respective
backgrounds. It is performed with three different electron-ion temperature ratios of
τi = 0.025, 1 and 3. The parallel current j∥ is set to zero in the model equations.
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Figure 4.2: Inertial filament scalings without parallel current contributions. Small
blobs propagate with a δ2⊥ scaling, larger blobs change to a δ

1/2
⊥ dependency. For

larger τi the range of the δ2⊥ scaling gets broader.

In order to keep the temperature ratios the energy exchange between electron and
ion backgrounds Wi is switched off. The cold ion case (τi = 0.025) only shows a

δ2⊥ scaling for very small filaments. For δ⊥ > 8ρ it follows a δ
1/2
⊥ scaling which

corresponds to the classical cold ion inertial scaling. Hot ion simulations show a δ2⊥
dependence for much lager blobs up to δ⊥ ∼ 40ρ before transitioning to the inertial
regime. A larger τi leads to an increased pi contribution in the vorticity which results
in a larger term scaling as δ2 in equation 3.10
If parallel currents are present, the dipole potential can also dissolved via the sheath
which leads to a δ−2

⊥ scaling. This is the dominant mechanism for large blob sizes
and small parallel connection lengths. Figure 4.3a shows vb/δ⊥ scalings for cold ions
(τi = 0.025) at different connection lengths from 5m to 100m. The small τi leads

(a) (b)

Figure 4.3: Velocity scalings for cold ions (left, τi = 0.025) and hot ions (right,
τi = 3) including sheath effects. The smallest blobs propagate in the δ2⊥ scaling.
Larger blobs follow the inertial scaling. The largest blobs propagate in the sheath
limited regime scaling as δ−2

⊥ . The sheath scaling δ−2 is only visible for the shortest
connection lengths.
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to the inertial term dominating the potential evolution. The 100m case is barely
influenced by the sheath and follows mostly the inertial regime while simulations for
shorter connection lengths transition to the sheath limited regime. The shorter the
connection length the smaller is the blob size at which the sheath effects dominate.
The δ2 regime is not present.
For hot ion simulations all three scalings discussed in section 3.5 are present. All
simulations are ion pressure dominated for δ⊥ < 20ρ before inertial or sheath effects
become significant depending on the connection length. With increasing δ⊥ filaments
transition from the ion-inertial regime to the inertial and sheath limited regime. This
is the case for the 10m and 25m cases. Longer L∥ only show the inertial regimes.
These simulations highlight the basic dynamics of filament motion assuming parallel
homogeneity. It has been shown that the hermes-2 model in the applied setup can
reproduce the analytical scalings as limit cases. This confirms that the relevant
physical effects are included in the model. More complex effects can be studied.
The next chapter introduces a varying curvature and studies the parallel effects
which alter the motion of a filament and its coherence along the field line.



Chapter 5

Parallel Coherence of Filaments

This chapter presents simulations investigating the parallel coherence of blobs along
a field line. Differential E × B drifts rip the filament apart if the parallel current
does not even out the parallel potential gradient fast enough. The two main mech-
anisms limiting the parallel current in flattening the varying perpendicular charge
separation are Ohmic resistance and electromagnetic inductance. Their effects on
parallel coherence are discussed separate from each other in section 5.1 . Section 5.2
shows simulations combining both effects while the last section 5.3 of this chapter
investigates the influence of a curvature variation on the averaged filament velocity.

5.1 Parametric Dependence of Filament Coher-

ence

The simulations in the following three sections feature a sinusoidal curvature point-
ing in the radial x-direction. The (b× κ) vector only has a z-component. The
amplitude is approximately 1/Rmaj with Rmaj = 1.65m the major radius of AUG.
The full z-component reads

(b× κ)z = 0.6 sin(y). (5.1)

A filament of size 40 ρ with τi = 3 and the same properties as in section 4.4 is used
for the simulations. Following the scaling in figure 4.3b this blob is mostly sheath
dominated for an unperturbed curvature. The varying curvature leads to differing
propagation speeds at different parallel positions. The difference in perpendicular
displacement ∆ is chosen as a measure for the parallel coherence of the structure.
For the sinusoidal curvature profile used in the following sections ∆ is determined by
the difference between the position of the filament at the toroidal position of least
curvature (ymin) and the position at the position of highest curvature (ymax) after
one characteristic blob propagation time τb = δ⊥/vb

∆ =
√

(x(τb, ymin)− x(τb, ymax))2 + (z(τb, ymin)− z(τb, ymax))2. (5.2)

A filament is considered coherent for ∆/δ⊥ < 1 i.e. if the displacement after one
blob propagation time τb is smaller than the initial blob of width δ⊥ The filament
velocity vb is determined by the potential, see equation 3.5. The dependence of ∆
of the plasma control parameters ν and βe is obtained from parallel Ohm’s law.

40



41 5.1. PARAMETRIC DEPENDENCE OF FILAMENT COHERENCE

Equation 3.27 can be rearranged for the parallel potential gradient

∂∥ϕ =
1

2
βe∂tψ +

1

n
∂∥pe + 0.71∂∥Te −

νj∥
n

(5.3)

which is connected to the parallel variation of the perpendicular velocity via ∂∥ϕ =
Bδ⊥∂∥vb. The above equation can be integrated in time and rewritten with charac-
teristic blob quantities to obtain a scaling for ∆. In the parallel direction quantities
and parallel derivatives (∂∥) are expected to vary on the scale of the curvature vari-
ation Lκ. In the case of the sinusoidal curvature this is the distance between the
minimum and maximum of the sine wave (Lκ = L∥/2). The relevant time scale
is the blob coherence time τb = δ⊥/vb. It is determined via a simulation with a
constant curvature of 0.6m. The average blob velocity is estimated to be one half of
the maximum velocity the filament reaches in the unperturbed situation. Hence, the
blob coherence time is approximated as τb ≈ δ⊥/2vb,max. Stationary Ampere’s law
is employed to substitute the vector potential j∥ = −∇2

⊥ψ ∼ −δ−2
⊥ ψ. Integrating

equation 5.3 gives an expression for the parallel displacement∫ τb

0

dt ∂∥ϕ ∼ δ⊥

∫ τb

0

dt ∂∥vb ∼
(vb(ymin)− vb(ymax)) τbδ⊥

Lκ

:=
∆δ⊥
Lκ

, (5.4)

∆/δ⊥ ∼ −
(
βeLκ

2
+
νLκτb
nδ2⊥

)
j∥ +

τb
nδ2⊥

pe + 0.71
τb
δ2⊥
Te. (5.5)

Discarding the parallel pressure and temperature gradients gives a scaling law for
the parallel coherence of a turbulent structure with control parameters ν and βe.
The neglected terms act against the Ohmic and inductive resistance terms. A simi-
lar calculation for parallel displacement has been performed for cold ion simulations
considering parallel resistive drift wave instabilities [56]. A parallel varying cur-
vature leads to an inhomogeneous filament drive due to varying divergence of the
diamagnetic current. The response of the parallel current depends on the Ohmic
and inductive resistance parallel to the magnetic field.
Figure 5.1 shows the parallel displacement of a filament with a sinusoidal curvature
profile along the field line. The displacement follows the curvature. In this case
(n = 1019m−3, T = 100 eV) the parallel Ohmic and inductive resistance is large
enough to hinder the parallel current sufficiently. The filament propagates in differ-
ent directions at the position of minimal and maximal curvature.
The effects of Ohmic and inductive resistance are first illustrated separately. From
the calculations in equation 5.4 the displacement between the minimum and the
maximum of curvature is expected to scale as

∆/δ⊥ ∼
(
βeLκ

2
+
νLκτb
nδ2⊥

)
j∥ := (β′ + ν ′) j∥. (5.6)

A larger normalized electron plasma beta β′
e or a larger normalized collisionality ν ′

increase the normalized parallel displacement ∆/δ⊥.
For electrostatic simulations (βe = 0) parallel current is only limited by the collision-
allity ν. At constant temperature T = 10 eV simulations with varying densities from
1018m−3 to 1019m−3 and L∥ from 10m to 200m are computed. These are visible
in figure 5.2a. The displacement first increases for higher normalized collisionality.
The increase of the displacement for larger collisionalities disappears as the blob
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Figure 5.1: Perpendicular displacement of a filament as a result of inhomogeneous
curvature drive along the magnetic field line. Here, a high β′

e dampens the parallel
current. The differential E × B advection shears the filament apart. The part
subject to a negative drive propagates backwards. The filament in the region of
maximum curvature propagates radially outwards. In the middle where the drive
vanishes structures that propagate parallel due to the flattening of the pressure
gradient appear.

dynamics is fully determined by perpendicular effects and parallel currents do not
have a significant influence anymore.
A similar picture appears for simulations with high β′

e and low ν ′ in figure 5.2b.
Here, the temperature is 100 eV. The densities and parallel connection lengths are
kept the same. The parallel current is primarily limited by the inductance. At suf-
ficiently high β′

e the parallel current is entirely damped on the advection timescale.
This is the timescale in which a blob travels a distance of δ⊥. A further increase in
β′
e does not influence the perpendicular blob dynamics.

The above equation 5.6 discards the pressure term in parallel Ohm’s law 3.27. A
parallel pressure gradient drives a parallel flow. The influence of the ∂∥pe contri-
bution is larger compared to the collisionality and electromagnetic terms for lower
connection lengths as both expressions of β′

e and ν
′ scale linearly with L∥ and ∂∥pe

scales as pe/L∥. Simulations with similar normalized collisionality ν ′ or β′
e show

higher displacement for longer L∥. This explains the scattering of the displacement
values in figures 5.2a and 5.2b.
The different saturation levels in figures 5.2a and 5.2b can be understood from the
velocity scalings. The temperature is 10 eV in the collisionally dominated regime
and 100 eV in the electromagnetically dominated regime. The blob used in these
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5.2. MULTIDIMENSIONAL PARAMETER DEPENDENCE OF

FILAMENT COHERENCE

(a) (b)

Figure 5.2: Normalized displacement of filaments subject to a sinusoidal curva-
ture for collisionally (left) and electromagnetically (right) dominated regimes. The
displacement increases as the parallel current is limited by Ohmic resistance or in-
ductance thus disconnecting parallel separate regions. For large β′

e or ν
′, the parallel

current does not have any influence on the advection timescale. The displacement
does not further increase. Different saturation levels are due to the different absolute
blob sizes. The blob size is kept at 40ρ, the Larmor radius changes.

simulations has an initial size of 40 ρ. Due to the high collisionality or electron
plasma beta, the blob propagates in the inertial regime, so vb ∼ δ1/2. The Larmor
radius scales with the square root of the temperature, therefore vb ∼ (40ρ)1/2 ∼ T 1/4

and the ratio between the displacements which scale with the velocity according to
equation 5.4 is expected to be equal. Indeed, the ratio of the two blob velocities is
101/4 ≈ 1.7. The ratio of the saturation displacements is approximately 1.4 and lies
in a similar range.

5.2 Multidimensional Parameter Dependence of

Filament Coherence

The influence of the two main control parameters β′
e and ν

′ has been examined sepa-
rately in the previous section. Both effects can be combined to cover the parameter
space relevant for filamentary transport in toroidal fusion devices. The parameter
scan behind figure 5.3 covers densities from 1018m−3 to 1019m−3, temperatures from
10 eV to 100 eV and parallel connection lengths from 25m to 200m. This leads to
a two dimensional evaluation of the parallel coherence of turbulent structures for a
relevant (β′

e, ν
′) space. The displacement between the maximum and minimum of

the normal curvature increases from the bottom left to the top right. High (β′
e, ν

′)
lead to significant displacements larger than the initial blob size δ⊥. The parallel
current is not able to resolve the parallel potential gradient ∂∥ϕ fast enough.
The simulations can be classified in two ways: They differ in their coherence. In-
coherent blobs reach ∆ > δ⊥. For coherent filaments the normalized displacement
stays below unity. The other distinction is between the dominant limiting factor
for the parallel current. It is either bound by collisional or electromagnetic effects.
In figure 5.3 these different regimes are indicated by a (ν ′ = β′

e) line and two lines
perpendicular to the former indicating ∆ < δ⊥ and ∆ > δ⊥. The influence of the
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Figure 5.3: Normalized displacement of filaments for a sinusoidal curvature drive in
(β′

e, ν
′) space for temperatures from 10 eV to 100 eV and densities from 1018m−3 to

1019m−3. The displacement is largest for large β′
e + ν ′.

pressure term described in section 5.1 leads to simulations where very similar (β′
e, ν

′)
show different displacements depending on the parallel connection length. Higher
L∥ cause higher displacements as the pressure gradient ∂∥pe drives a parallel flow
which acts against the Ohmic and inductive terms and scales as 1/L∥

5.3 Influence of Varying Curvature on Filament

Velocity

The local curvature in this section can be considered to be the sum of the average
curvature ξ̄ and a sinusoidal variation with amplitude ξ̃ so that ξ = ξ̄+ ξ̃ sin(y). Fig-
ure 5.4 shows the maximum averaged velocity of a filament of size δ⊥ = 30 ρ against
the relative curvature variation ξ̃/ξ. In the following simulations ξ̄ = 0.6m−1 is
chosen. The small increase in velocity for ξ̃/ξ̄ < 1 compared to the simulation with
no variation can be attributed to the influence of the sheath boundary condition on
the COM calculation. It influences parts of the blob farther away from the boundary
at y = 0 and y = L∥ for the 10 eV cases.

For ξ̃/ξ̄ > 1 the curvature variation leads to a significant deceleration of the filament
compared to the unperturbed case. This effect is increased for larger contributions
of inductance and resistance (β′

e, ν
′). In Figure 5.4 the effect of the varying curva-

ture is much stronger for n = 1019m−3, T = 100 eV compared to n = 1018m−3,
T = 10 eV. In the most extreme case, the velocity is less than half compared to the
unperturbed case.



45
5.3. INFLUENCE OF VARYING CURVATURE ON FILAMENT

VELOCITY

Figure 5.4: Toroidally averaged velocities for filaments with an average curvature
drive plus a sinusoidal perturbation. For large perturbation amplitudes the averaged
filament velocity decreases significantly for higher β′

e or ν
′.

The deceleration of the filament is caused by parallel flows driven by ∂∥pe decrease
the amplitude of the perpendicular pressure perturbation and therefore the filament
drive. For ξ̃ ≥ ξ̄ this contribution of the varying curvature to the filament velocity
becomes dominant over the average curvature drive leading to significant displace-
ments. The filament loses parallel coherence.
In the following chapter realistic magnetic geometries in tokamaks and stellarators
are simulated. The insights gained in this chapter are used to evaluate the coherence
of filaments for these cases.



Chapter 6

Simulations of realistic field lines

In this chapter the insights about filament coherence from the previous chapter 5
are applied to realistic cases. Two cases are investigated: the curvature of a circular
tokamak which has been derived in section 3.6 and the curvature of a field line in
W-7X. The latter field line crosses the field of view of a newly installed Gas Puff
Imaging diagnostic (GPI) that will be used in the next operation phase.

6.1 Circular Tokamak

In this section simulations with the curvature profile of a circular tokamak calculated
in section 3.6 are performed. The expressions for geodesic and normal curvature read

κn = − 1

1 +
(

r
qR0

)2 ( r

q2R2
0

+
cos(θ)

R0 + r cos(θ)

)
and (6.1)

κg =
1√

1 +
(

r
qR0

)2 sin(θ)

R0 + r cos(θ)
.

With AUG-like parameters (R0 = 1.6m, r =0.5m, q =4) the blob temperatures
and densities are taken from measurements in AUG L-Mode plasmas [44]. The sim-
ulation domain has the dimensions L⊥ = 0.15m and L∥ = 100m. The resolution is
132× 64× 128.
Figure 6.1 shows the displacement in radial and binormal direction. The radial dis-
placement correlates with the binormal component of the vector (b× κ)z ≈ −κn.
The radial component of this vector is similar to the geodesic curvature and corre-
lates with the binormal displacement. The local curvature drives the charge sepa-
ration which leads to differential E × B advection. The difference in displacement
is increased for a higher ion temperature as this increases the curvature drive. For
AUG-like parameters the displacement stays smaller than the perpendicular blob
size. The parallel current resolves the potential too fast to create significant dis-
placement. This can be understood from the displacement scaling from the previous
section.

∆/δ⊥ ∼
(
βeLκ

2
+
νLκτb
nδ2⊥

)
j∥ := (β′ + ν ′) j∥. (6.2)

The AUG-like parameters (10 eV, 1018m−3) correspond to the lower end of the
(β′

e, ν
′) parameter space spanned in figure 5.3. The densities and temperatures in
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Figure 6.1: Radial and binormal displacement of a filament in a circular tokamak
with AUG-like parameters. The displacement correlates with the respective compo-
nents of the b× κ vector which drives the charge separation.

this plot range from 1018m−3 1019m−3 and from to 10 eV to 100 eV, respectively. The
temperature and density are comparatively low while the curvature fall-off length is
similar to the sinusoidal curvature used during section 5.1 with L∥ = 100m. The
displacement of the equivalent datapoint in figure 5.3 is ∆/δ⊥ = 0.79. This is higher
than the displacement observed in this simulation (∆/δ⊥ = 0.34), which can be
explained by the lower density and pressure perturbations compared to the previous
section. The low displacement observed for AUG-like parameters in a circular toka-
mak is compatible with the parameter dependences found for sinusoidal curvature.
For higher density and temperature (5 · 1018m−3, 50 eV) a higher normalized dis-
placement of 0.47 is found, which compares similarly to the analogous displacement
from figure 5.3 of 1.27.
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Figure 6.2: The W7-X scrape-off layer. The stellarator magnetic field and the
magnetic island chain around the primary separatrix lead to a highly varying parallel
connection length and curvature [66].

6.2 W7-X Field Line

In the next Operation Phase of W7-X there will be a Gas Puff Imaging diagnostic
installed to investigate the plasma edge near a magnetic island [79]. This region
experiences a strong variation in the parallel connection length as well as a highly
inhomogeneous curvature. Effects of a transition in L∥ have been investigated in
[80]. The following simulations are similar to the simulations with sinusoidal curva-
ture from the previous chapter but feature the realistic curvature profile of a W7-X
field line crossing the line of sight of this diagnostic.
Simulations are performed in which a filament is initialized as a Gaussian pressure
perturbation homogeneous along a field line. The curvature profile of the W7-X field
line taken from the IPP-Webservices [54]. The curvature is calculated using a field
line tracer provided by Dr. Carsten Killer. The information about blob size and
density are taken from recent experimental studies [66]. The filament is initialized
with δ⊥ ≈ 1 cm, a background density of 6 · 1018m−3 and a density perturbation of
30% above the background. The electron and normalization temperature is 22 eV
with a 10% perturbation. There is no measurement of ion background temperature
and fluctuations in W7-X. Therefore, three different cases are investigated: a cold
ion case with τi = 0.1, a case with equal electron and ion temperature (τi = 1) and
a hot ion case (τi = 3). The relative ion temperature fluctuation amplitude is set to
10%. The perpendicular displacement along the field line correlates with the curva-
ture which can be seen in figure 6.4. This is similar to the simulations of circular
tokamak curvature in the previous section. The simulations with τi = 0.025 and 1
show a very small displacement. For the hot ion case the displacement at the most
prominent curvature feature exceed one blob size. The displacement is increased for
higher τi as this increases the overall pressure perturbation and the curvature drive.
The displacement of the most similar datapoint (5 · 1018, 20 eV) with sinusoidal cur-
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Figure 6.3: The field of view of the GPI diagnostic with the L∥ profile [67]. The
white dot indicates the position where the field line used in this section crosses
the plane of sight. The island divertor creates regions of closed field lines (yellow)
outwards of the primary separatrix.

vature is ∆/δ⊥ = 2.12. This is much higher compared to the W7-X simulations
with τi = 3. This can be once again understood from the scaling as explained in the
following.
The displacement in formula 5.6 scales linearly with the curvature fall off length
which is much shorter for the W7-X field line compared to the sinusoidal case in
the previous chapter 5. It shows thin localized spikes of curvature. As the parallel
connection length is 105m the curvature fall of length is approximately 10m. The
simulations in chapter 5 are performed on a sinusoidal curvature with only one pe-
riod along the field line. The curvature fall off length is L∥/2 = 50m. Additionally,
the density and temperature perturbations are smaller. The density perturbation
is only 30% compared to 100% in chapters 4 and 5. The drive of the filaments is
reduced compared to the previous simulations.
The simulations with τi = 0.025 and 1 show almost no filament propagation despite
an average normal curvature of about 0.016m−1. The weak curvature is not able
to drive significant E × B advection. The high variation reduces the propagation
further compared to a simulation with the average curvature of W7-X. This is con-
sistent with the findings from the simulations with average drive and snd sinusoidal
variation in section 5.3.
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Figure 6.4: Radial displacement of a filament along a field line at the observation
point of the new GPI diagnostic and the binormal component of the b × κ vector.
The curvature fall-off length Lκ of the most prominent curvature feature is indicated.
The displacement follows the curvature. It increases with an increased amplitude of
the ion pressure perturbation which increases the drive.



Chapter 7

Summary

In this thesis the hermes-2 model equations are solved by means of the BOUT++

framework to investigate the coherence of filaments experiencing a parallel varying
curvature drive.
The different scalings of the filament velocity with the perpendicular blob size δ⊥ are
reproduced in simulations with constant curvature to show that hermes-2 contains
the important physical effects to describe filament physics:
If the potential dipole of the filament is primarily reduced by the ion pressure term
(∼ ∆⊥pi) of the polarization current, the velocity scales as vb ∼ δ2⊥. For the inertial

term (∼ ∆⊥ϕ) dominating the polarization current, the scaling is ∼ δ
1/2
⊥ . In figure

4.2 it is visible that the δ2⊥ scaling is found for smaller filaments. This scaling dis-

appears for the cold ion case, which only shows a δ
1/2
⊥ velocity dependence.

If the parallel current dominates the current balance the velocity scales as δ−2
⊥ . Fig-

ures 4.3a and 4.3b show the filament velocity for parallel connection lengths from
10m to 100m for cold and hot ions respectively. The δ2 scaling arises for high
perpendicular filament sizes and low parallel connection lengths. Filaments in these
simulations at a density of 1018m−3 and temperatures between 10 eV and 100 eV
with a constant curvature of 0.6m−1 propagate with speeds of up to 12% of the
sound speed.
For a constant curvature the filament is evenly elongated along the magnetic field
line. A parallel varying curvature leads to a varying charge separation causing dif-
ferential E×B advection along the field line. The parallel current sets in to reduce
the inhomogeneous polarization. If the parallel current flattens the parallel potential
gradient fast enough, the filament stays coherent along the field line. Otherwise, the
differential E × B advection rips the filament apart into separate structures. The
parallel displacement between the point of lowest and the point of highest curvature
is chosen as a measure of filament coherence. The displacement ∆ is normalized to
the perpendicular blob size δ⊥. A filament is considered coherent for ∆/δ⊥ < 1.
The evolution of the parallel current is governed by parallel Ohm’s law with the main
control parameters being collisionallity ν and the electron plasma beta βe governing
the Ohmic resistance and the inductance terms. Normalized via the blob corre-
spondence principle ν ′ and β′

e control the propagation time of the parallel current
and determine the parallel displacement of different parts of the filament. High ν ′

and β′
e increase the propagation of the parallel current j∥ against the perpendicular

advection time of the blob allowing for differential displacement.
Simulations for β′

e → 0 and ν ′ → 0 are shown in figures 5.2a and 5.2b, where
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the normalized displacement ∆/δ⊥ is governed by only ν ′ or β′
e, respectively. The

maximum displacement is found to be ∆/δ⊥ = 2.67. These results are compatible
with previous work on the coherence of filaments [68]. There, an increase in tem-
perature has been found to increase filament coherence. As these simulations were
electrostatic (βe = 0) an increase in temperature decreases the collisionality which
decreases the parallel displacement.
The combined influence of ν ′ and β′

e is displayed in figure 5.3. Simulations with a
sinusoidal curvature variation along the field line show significant displacement for
sufficiently high values of (ν ′ + β′

e), exceeding the perpendicular blob size δ⊥. De-
viations from the scaling ∆/δ⊥ ∼ (ν ′ + β′

e)j∥ arise from the influence of the parallel
pressure gradient ∂∥pe ∼ 1/L∥pe. Its influence is increased for smaller connection
lengths and it acts against the Ohmic and inductive resistance terms. Therefore,
simulations with similar values of (ν ′ + β′

e) show larger displacements for higher par-
allel connection lengths.
A sinusoidal curvature with an additional constant curvature drive is shown to de-
crease the filament velocity compared to the homogeneous curvature case if the
amplitude of the variation is of similar magnitude as the average drive. This is
shown in figure 5.4. A large displacement leads to parallel flows driven by parallel
pressure gradients ∂∥pe. This decreases the amplitude of the perpendicular pressure
perturbation reducing the drive of filament motion. For a density of 1019m−3 and a
temperature of 100 eV which corresponds to comparatively high (ν ′ + β′

e) in figure
5.3 the filament velocity is reduced to ≈ 40% of the unperturbed case for a curvature
variation four times higher than the average curvature.
Simulations of filaments in a circular tokamak and simulations of a field line from
W7-X in areas relevant for a future diagnostic show displacements compatible to the
previously motivated parameter dependences. The displacement along the field line
follows the curvature profile in the radial and binormal direction. Simulations with
blob and background temperature and density inputs from AUG measurements in
figure 6.1 show a small radial displacement of 0.34. This is compatible to the results
from figure 5.3 as the pressure perturbations in the tokamak simulations are smaller.
The W7-X-like curvature shows thin localized spikes of high curvature. This results
in the normalized displacement exceeding one perpendicular blob size at the most
prominent curvature feature. This is displayed in figure 6.4 and fits the displacement
scaling as the curvature fall-off length and the pressure perturbations are lower.
The strong variation decreases the filament velocity to almost zero. This is in agree-
ment with recent experimental findings [66] which show that filaments in W7-X are
approximately bound to their initial flux surface and do not perform ballistic motion
or turbulence spreading in the scrape-off layer.
The hot-ion hermes-2 code used in this thesis provides a flexible tool to simulate
filament and turbulent dynamics. Filaments can be investigated for their velocity,
coherence and secondary instabilities. It is viable for different positions in the SOL.
This can be applied to other W7-X or tokamak configurations in the future. In par-
ticular, hermes-2 is planned to investigate the temperature dynamics of filaments
during their propagation through the SOL. This project will center on the role of
the collisional energy exchange between energy and ions.
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senko, J. Majano-Brown, O. Marchuk, M. Mardenfeld, P. Marek, S. Massidda,
S. Masuzaki, D. Maurer, K. McCarthy, P. McNeely, A. Meier, D. Mellein,
B. Mendelevitch, P. Mertens, D. Mikkelsen, O. Mishchenko, B. Missal, J. Mit-
telstaedt, T. Mizuuchi, A. Mollen, V. Moncada, T. Mönnich, T. Morizaki,
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Milligen, A. J. van Vuuren, L. Vela, J.-L. Velasco, M. Vergote, M. Vervier,
N. Vianello, H. Viebke, R. Vilbrandt, A. von Stechow, A. Vorköper, S. Wadle,
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